Grade 11/12 Math Circles
 October 25, 2023
 P-adic numbers, Part 1 - Solutions

Exercise Solutions

Exercise 1

Find a 10 -adic number that equals $\frac{1}{3}$.

Exercise 1 Solution

This number multiplied by 3 should also be $\ldots 0000000001$, we can reconstruct as

$$
\begin{array}{r}
\ldots . ? ? ? ? ? ? ? ? ? ? 7 \\
\times \quad \ldots 0000000003 \\
\hline \ldots 0000000021
\end{array}
$$

Then we pick next digit to get ...01:

$$
\begin{array}{r}
\ldots . ? ? ? ? ? ? ? ? ? 67 \\
\times \ldots 0000000003 \\
\hline \ldots 0000000021 \\
+\quad \ldots 0000000180 \\
\hline \ldots 0000000201
\end{array}
$$

Continue in the same fashion to get $\ldots 6666667=\frac{1}{3}$.

Exercise 2

Find a 10 -adic number that equals -3 .

Exercise 2 Solution

This number when added with 3 should result in ... 0000000000 , so

$$
\begin{array}{r}
\ldots 9999999997 \\
+\quad \ldots 0000000003 \\
\hline \ldots 0000000000
\end{array}
$$

Then this process should converge on the number ... $9999999997=-3$.

Exercise 3

How would you prove Theorem 1?

Exercise 3 Solution

A quick, yet informal proof can be done by noticing that the sum of complements in any p-adic system is equal to $p-1$, then the digit corresponding to this number is $p-1$, which for 10 -adics is simply 9 , finally if we just took complement and sum the two numbers x to $-x$, the result would be ...99999999, then adding 1 would always result in 0 , which is exactly what we wantfrom adding x to $-x$. The proof is similar for any p.

Exercise 4

Find a 3 -adic expansion of -1 .

Exercise 4 Solution

Similarly to Exercise 3, we can use an analog of Theorem 1 to get

$$
\begin{array}{r}
\ldots 2222222222 \\
+\quad \ldots 0000000001 \\
\hline \ldots 0000000000
\end{array}
$$

Then this process should converge on the number ... $2222222222=-1$ in 3 -adics.

Exercise 5

Find the first three digits of $\sqrt{7}$ in the 3 -adic integers.

Exercise 5 Solution

First, we need to write down 7 in 3 -adics:
$7=\ldots 21=21_{3}$. Then we the number $\sqrt{7}$ from multiplication of a 3 -adic number by itself, that should result in 21_{3} :

$$
\begin{array}{r}
\ldots ? ? ? ? ? ? ? ? 111 \\
\times \quad \ldots ? ? ? ? ? ? ? 111 \\
\hline \ldots 0000000111 \\
\ldots 0000001110 \\
+\quad \ldots 0000011100 \\
\hline \ldots 0000010021
\end{array}
$$

So, $\sqrt{7}=\ldots 111_{3}$.

Exercise 6

Find the first few digits of $\sqrt{17}$ in the 2-adic integers.

Exercise 6 Solution

First, we need to write down 17 in 2-adics:
$17=\ldots 10001=10001_{2}$. Then we the number $\sqrt{17}$ from multiplication of a 2 -adic number by itself, that should result in 10001_{2} :

$$
\begin{aligned}
& \text {. . .???????1011 } \\
& \times \text {. .???????1011 } \\
& \text {... } 0000001011 \\
& \text {... } 0000010110 \\
& \text {... } 0000000000 \\
& +\ldots 0001011000 \\
& \text {... } 0001110001
\end{aligned}
$$

So, $\sqrt{17}=\ldots 1011_{2}$.

Exercise 7

Find p for which the equation $x^{2}=-1$ has at least a single solution.

Hint:

Check $p=2,3$ first, then consider $\lim _{n \rightarrow \infty} 2^{5^{n}}$ in a 5 -adic system.

Exercise 7 Solution

Cheking $p=2$. Since $x^{2}=-1$, we first write what -1 is on a 2 -adic system:

$$
\begin{array}{r}
\ldots 1111111111 \\
+\quad \ldots 0000000001 \\
\hline \ldots 0000000000
\end{array}
$$

Then this process should converge on the number ... $1111111111=-1$ in 2-adics.

Now we are looking for such a x, that $x^{2}=\ldots 1111111111$, which means

$$
\begin{array}{r}
\ldots \text {. ???????????? } \\
\times \ldots \text {. ??????????? } \\
\ldots \ldots 1111111111
\end{array}
$$

We only have two digits 0 and 1 , the last digit can't be 0 otherwise the last digit of the product would have been 0 , then it's 1 :

$$
\begin{array}{r}
\ldots ? ? ? ? ? ? ? ? ? ? 1 \\
\times \begin{array}{l}
\ldots ? ? ? ? ? ? ? ? ? 1
\end{array} \\
\ldots \ldots 1111111111
\end{array}
$$

Then the next digit can be either 0 or 1 , again for same reasons, 0 is not a choice, however
. ..?????????11
\times. .?????????11
. . .?????????01

Which means there is no such nu, ber x in 2-adics, such that $x^{2}=-1$!
Cheking $p=3$ is done in a similar way.
Cheking $p=5$. Consider $\lim _{n \rightarrow \infty} 2^{5^{n}}$ in a 5 -adic system. Remember the possible digits in this sytem are $0,1,2,3,4$.
The limit is a p-adic number, let's see how it looks like:

$$
\begin{aligned}
2^{1} & =2_{5} \\
2^{5} & =32_{5} \\
2^{25} & =33554432_{5}, \\
2^{78125} & =\ldots 41301432431212_{5}, \\
2^{390625} & =\ldots 01012032431212_{5}
\end{aligned}
$$

if you found less digits, it is just fine, I used Wolfram to get these digits.
Let's call this limit $x=\lim _{n \rightarrow \infty} 2^{5^{n}}=\ldots 32431212_{5}$

Since the limit is converging on a single number x, there is no difference in 5 -adic number between $2^{5^{n}}$ and $2^{5^{n+1}}$ as $n \rightarrow \infty$.
Therefore $x^{5}=x$.
Now let's square x, like we did before:

$$
\begin{array}{r}
\ldots 32431212 \\
\times \ldots 32431212 \\
\hline \ldots 44444444
\end{array}
$$

When we add 1 to the number $\ldots 44444444_{5}$ we get 0 , so $\ldots 44444444_{5}=-1_{5}$. This means that $x^{2}=\ldots 44444444_{5}=-1$!
This can also be seen from factorization of $x^{5}-x=0$:

$$
x^{5}-x=(x-1) x(x+1)\left(x^{2}+1\right)=0
$$

Problem Set Solutions

1. What's $\ldots 13131313_{5}=$?

Solution: Recall $\ldots 444444444=-1_{5}$, let $x=\ldots 13131313_{5}$, then

$$
100 x=\ldots 13131300
$$

$$
100 x+13_{5}=\ldots 13131313=x
$$

so $100 x+13=x$, then $x=\frac{13}{1-100}=-\frac{13_{5}}{99_{5}}=-\frac{8}{24}=-\frac{1}{3}$ in base 10 .
2. Find the numbers $\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ as real numbers and as 10 -adic numbers. What do you notice?

Solution: In real numbers we can compute

$$
\begin{aligned}
& 1 / 7=0.142857142857 \ldots \\
& 2 / 7=0.285714285714 \ldots, \\
& 3 / 7=0.428571428571 \ldots, \\
& 4 / 7=0.571428571429 \ldots, \\
& 5 / 7=0.714285714286 \ldots, \\
& 6 / 7=0.857142857143 \ldots,
\end{aligned}
$$

in 10-adic numbers we have

$$
\begin{aligned}
1 / 7 & =\ldots 857142857143, \\
2 / 7 & =\ldots 714285714286, \\
3 / 7 & =\ldots 571428571429, \\
4 / 7 & =\ldots 429571428572, \\
5 / 7 & =\ldots 286714285715, \\
6 / 7 & =\ldots 143857142858
\end{aligned}
$$

The 10 -adic fractions are shifted and the have a +1 in the last digits.
3. Using the following theorem: A p-adic number has an eventually periodic p-adic expansion if and only if it is rational, i.e. can be written as a fraction. Determine the periodic 5-adic expansion of $\frac{4}{3}$.

Solution: We start by noticing that 4 is just 4_{5} in 5 -adic system and $\frac{1}{3}=\ldots 42424243_{5}$ by Theorem 1.

Then $\frac{4}{3}=4_{5} \times \ldots 42424243_{5}$, which is

$$
\begin{array}{r}
\ldots 424242423 \\
\times \ldots 000000004 \\
\hline \ldots 131313132
\end{array}
$$

So you can say the periodic 5 -adic expansion of $\frac{4}{3}$ is periodic with (13) in period.
4. Show that a 2 -adic integer that is a unit has a square root if and only if its last 3 digits are ... 001.

Solution: Proving the statement the last 3 digits of a 2 -adic number are $\ldots 001$, then it can be a square root of unity, since
$\times \ldots$...???????001
. . ???????001
and all other digits would not result in ... 001 .
The other way around if a 2 -adic integer is a unit, then the last 3 digits of its square root are . . 001:

